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Diverse animal taxametamorphose between larval and juvenile phases
in response to bacteria. Although bacteria-induced metamorphosis is
widespread among metazoans, little is known about the molecular
changes that occur in the animal upon stimulation by bacteria. Larvae
of the tubeworm Hydroides elegans metamorphose in response to
surface-bound Pseudoalteromonas luteoviolacea bacteria, producing
ordered arrays of phage tail-like metamorphosis-associated contractile
structures (MACs). Sequencing the Hydroides genome and transcripts
during five developmental stages revealed that MACs induce the reg-
ulation of groups of genes important for tissue remodeling, innate
immunity, and mitogen-activated protein kinase (MAPK) signaling. Us-
ing two MAC mutations that block P. luteoviolacea from inducing set-
tlement or metamorphosis and three MAPK inhibitors, we established
a sequence of bacteria-induced metamorphic events: MACs induce
larval settlement; then, particular properties of MACs encoded by a
specific locus in P. luteoviolacea initiate cilia loss and activate meta-
morphosis-associated transcription; finally, signaling through p38 and
c-Jun N-terminal kinase (JNK) MAPK pathways alters gene expression
and leads to morphological changes upon initiation of metamorphosis.
Our results reveal that the intricate interaction between Hydroides and
P. luteoviolacea can be dissected using genomic, genetic, and pharma-
cological tools. Hydroides’ dependency on bacteria for metamorphosis
highlights the importance of external stimuli to orchestrate animal de-
velopment. The conservation of Hydroides genome content with dis-
tantly related deuterostomes (urchins, sea squirts, and humans)
suggests that mechanisms of bacteria-induced metamorphosis in
Hydroides may have conserved features in diverse animals. As a
major biofouling agent, insight into the triggers of Hydroides meta-
morphosis might lead to practical strategies for fouling control.
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Free-swimming larvae of marine invertebrates must identify sites
favorable for their settlement and subsequent metamorphosis

into adults. But how do they identify these sites? Many species—
including sponges (1), corals (2, 3), crabs (4), sea urchins (5), and
ascidians (6)—use cues from bacteria (Fig. 1A) (7). This bacteria-
mediated metamorphosis is essential for coral reef formation (8),
and causes the costly accumulation of encrusting organisms on
submerged surfaces such as the hulls of ships [i.e., biofouling (7, 8)].
Although in a few cases the bacterial cues (and the genes encoding
them) have been identified (3, 9, 10), very little is known about how
these cues mediate the resultant developmental cascade in animals
and how developmental cues may be manipulated to promote or
deter colonization.
Metamorphosis can be defined as the morphological, physio-

logical, and behavioral transition from larva to juvenile (11, 12).
During bacteria-induced metamorphosis, the sensing of bacterial
cues must be coordinated with the regulation of development (7,
11, 12). It is hypothesized that metamorphosis evolved multiple
times among metazoans, yet common signaling systems were
independently coopted to coordinate the metamorphic transition

(12–15). These systems include hormones (16–18), neurotransmit-
ters (19–21), and nitric oxide (22–24). Additionally, diverse animals
regulate metamorphosis at the transcriptional and posttranslational
levels, such as differential expression of metamorphosis-associated
genes (25–27) and MAPK signaling (28–31), respectively. Although
a number of signaling systems and regulatory networks orchestrate
metamorphosis in animals from diverse taxa, comparatively little is
known about how bacteria stimulate these systems and networks.
The tubeworm Hydroides elegans (Haswell 1883; hereafter

Hydroides) is a significant biofouling pest in tropical and subtropical
harbors (32, 33), and its larvae are dependent on bacteria to initiate
metamorphosis (9, 10, 34, 35). This makes it an appealing model
organism in which to study the mechanisms of biofouling and
how bacteria mediate animal development. In the laboratory, only
certain bacterial species induce tubeworm metamorphosis (34–36),
suggesting that some bacteria possess particular properties that serve
as a metamorphosis cue. One such bacterium is Pseudoalteromonas
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luteoviolacea, a Gammaproteobacterium that induces metamorpho-
sis of Hydroides (9, 34, 37), corals (2), and urchins (5). Recently,
P. luteoviolacea was found to induce the metamorphosis ofHydroides
by producing ordered arrays of bacteriophage tail-like structures,
termed metamorphosis-associated contractile structures (MACs) (10).
Similar phage tail-like structures possess bactericidal activity (38, 39)
and mediate virulence in animals (40, 41). However, MACs are
the first known phage tail-like structures to mediate a beneficial
bacteria–animal interaction (10). When grown in rich media in the
absence of Hydroides larvae, 2.4% of P. luteoviolacea cells pro-
duced MACs by a process of cell lysis (10). Although MACs are
essential for Hydroides metamorphosis, we do not know what
conditions stimulate MAC production in the environment or how
MACs stimulate metamorphic development in Hydroides larvae.
To investigate the Hydroides developmental cascade induced

by MACs, we used two bacterial mutations that block Hydroides
settlement or metamorphosis at different stages. Sequencing
Hydroides transcripts during five developmental stages identified
groups of gene products that were key to metamorphosis. One
such group comprised MAPK signaling proteins, whose roles
were verified using inhibitors of MAPK phosphotransfer activity,
indicating that metamorphosis relies on posttranslational modi-
fications. These genomic, genetic, and pharmacological tools
enabled us to dissect the sequence of events following the in-
duction of tubeworm metamorphosis by a bacterial inducer.

Results
The Hydroides Genome Possesses a Conserved Gene Content. To in-
vestigate the events that occur upon bacteria-stimulated meta-
morphosis, we sequenced the genome of Hydroides (48× average
coverage) and transcripts at five developmental stages: (i) pre-
competent larvae; (ii) competent larvae (larvae capable of com-
pleting metamorphosis); competent larvae exposed to purified
MACs for (iii) 5 min and (iv) 30 min; and (v) adult animals
(Fig. 1B). The assembled draft genome is 1,026.1 Mb with an N50
(weighted median contig size) of 17.3 kb, and is predicted to encode
142,653 transcripts, corresponding to 113,410 loci, of which 93,636
are protein-coding; 33.94% of the genome is represented by re-
petitive sequences (SI Appendix, Table S1). Using the Core
Eukaryotic Genes Mapping Approach (CEGMA) (42), the com-
pleteness of the assembly is estimated to be 89.1%. Additional in-
formation on the Hydroides genome and transcriptome can be
found in SI Appendix, Results.
To gauge the relative gene conservation ofHydroides in relation to

other model species that represent the breadth of multicellular ani-
mal life, we mapped all Hydroides genes against the genomes of
several model organisms. Hydroides (a lophotrochozoan) and the
fruit fly Drosophila melanogaster and nematode Caenorhabditis ele-
gans (both ecdysozoans) group into the protostome clade (Fig. 1A).
However, the Hydroides genome possesses more gene homologs
with deuterostomes (urchins, sea squirts, zebrafish, and hu-
mans) and a nonbilaterian cnidarian (sea anemone) than it does with
these model ecdysozoans (Fig. 1C). We further classified Hydroides
genes into major metazoan groupings based on their homology
[BLASTP against the non-redundant (nr) database, e-value cutoff of
10−10; SI Appendix, Fig. S1]. Of Hydroides’ 61,540 genes with iden-
tified homologs, 6,087 genes (9.9%) are shared with deuterostomes
and nonbilaterian animals only and not ecdysozoans. In comparison,
112 (0.2%) are shared with ecdysozoans and nonbilaterians only and
not deuterostomes. These results suggest that Hydroides genome
content has not evolved as quickly as the fruit fly and nematode
genomes. Consistent with these findings, other annelids were found
to possess relatively slowly evolving genomes (43, 44), and D. mel-
anogaster and C. elegans are documented to possess more derived
genomes with extensive gene loss and higher rates of molecular evo-
lution (45, 46). Studying mechanisms that mediate bacteria-induced
metamorphosis in Hydroides might provide a framework to under-
stand bacteria–animal interactions in diverse animals.
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Fig. 1. Bacteria-induced metamorphosis is widespread among animal taxa.
(A) Many species from diverse taxa possess a biphasic lifestyle in which they
undergometamorphosis between larval and adult phases of life (blue). Nearly
all of these taxa possess representative species that metamorphose in re-
sponse to bacteria (yellow). (B) Hydroides developmental life cycle. RNA was
sequenced from five stages of Hydroides development: precompetent larvae,
competent larvae, larvae induced to metamorphose by the addition of MACs
for 5 min and 30 min, and adult animals. A circular GFP-labeled MAC array is
depicted in green. (C) The number of homologous genes identified between
the Hydroides genome and the genomes of other model animals. The
Hydroides (lophotrochozoan) genome is more similar to deuterostome ani-
mals (urchins, sea squirts, and humans) than to model ecdysozoan species.
Polychaete worm, Capitella teleta; Pacific oyster, Crassostrea gigas; purple sea
urchin, Strongylocentrotus purpuratus; zebrafish, Danio rerio; human, Homo
sapiens; starlet sea anemone, Nematostella vectensis; transparent sea squirt,
Ciona intestinalis; fruit fly, D. melanogaster; nematode, C. elegans.
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Two Bacterial Loci Are Required for Different Stages of Metamorphosis.
Settlement and metamorphosis of Hydroides in response to MACs
can be classified into five stages: (i) swimming; (ii) initiation of
settlement, indicated by slow swimming or crawling upon contact
with MACs; (iii) irreversible initiation of metamorphosis, starting
with the loss of cilia near the prototroch; (iv) body elongation and
primary tube secretion; and (v) eversion of the collar, production of
the secondary tube, and formation of branchial lobes (Movie S1).
We quantified settlement by observing the vertical distribution of
larvae at 5 and 30 min after exposure to MACs. Five minutes after
larvae were exposed to wild-type MACs, larvae initiated settlement
behavior (i.e., slowed or stopped swimming), causing them to
collect at the bottom of the chamber (Fig. 2A). Larvae exposed to
extract from a bacterial strain lacking the baseplate of MACs
(ΔmacB), a key structural component of MACs (9, 10), did not
initiate settlement behavior or begin metamorphosis.
When exposed to MACs from a P. luteoviolacea mutant lacking

a segment of the genome containing six genes (JF50_12590–
JF50_12615, ∼8.2 kb; hereafter Δ12590–615), Hydroides larvae
initiated settlement behavior but did not lose their cilia or con-
tinue to metamorphose compared with larvae exposed to wild-
type MACs (Movie S2). After 5 min, these larvae were distributed
significantly differently from larvae unexposed to MACs or larvae
exposed to extract from a ΔmacB strain (Fig. 2A). Thirty minutes
after exposure, these larvae resumed a distribution similar to un-
exposed or ΔmacB controls, whereas larvae exposed to wild-type
MACs continued to metamorphose (Fig. 2B). All six genes de-
leted in the Δ12590–615 mutant encode hypothetical proteins and
lie about 12 kb away from the closest characterized gene (macS)
known to be essential for the structure and function of MACs (10).
When these six genes were reintroduced into their original ge-
nomic location, the bacteria were again able to induce meta-
morphosis (Fig. 2C). MACs from the Δ12590–615 mutant were
similar to MACs from P. luteoviolacea wild type in number (Fig.
2D), size, and structure (Fig. 2 E–G). These results suggest that
the structure of MAC arrays produced by the Δ12590–615 mutant
was largely intact and sufficient to initiate settlement. However,
the deleted region is required for MACs to initiate the meta-
morphosis of Hydroides.

MACs Activate Tissue Remodeling-, Innate Immunity-, and Signaling-
Associated Genes upon Stimulation of Metamorphosis. To determine
whether changes in gene expression accompany the initial events of
Hydroides settlement and metamorphosis, we compared the tran-
scriptomes of competent larvae unexposed to MACs with larvae
exposed to MACs for 5 or 30 min. [These time points were chosen
because at these times, larvae clearly responded differently to
MACs from the wild-type and Δ12590–615 strains (Fig. 2).] When
we compared transcripts from competent larvae unexposed to
MACs with larvae exposed to MACs for 5 min, no transcripts were
identified as significantly different. However, by 30 min, exposure to
MACs resulted in significantly different transcription of 156 genes
(P ≤ 0.05; 8 down-regulated and 148 up-regulated; Dataset S1).
Numerous genes were up-regulated upon the stimulation of

metamorphosis with bacterial phage tail-like structures (SI Appendix,
Fig. S2 and Dataset S1). Notably, MACs stimulated the expression of
five astacin-family (47) matrix metalloproteinase (MMP)-encoding
genes 4.9- to 21.0-fold after 30 min of induction and a collagen triple-
helix (PF01391) domain-containing protein (up-regulated 6.0-fold).
The up-regulation of MMP and collagen domain-containing genes is
consistent with enzyme-mediated remodeling of tissues and structures
accompanying metamorphosis (48). MACs stimulated the expression
of two kazal-type serine protease inhibitor (SPI) domain-containing
proteins (up-regulated 3.0- and 3.1-fold), known to have antimicrobial
properties and implicated in host innate immunity in other in-
vertebrate animals (49, 50). MACs induced the expression of 15
genes (up to 552.3-fold) encoding proteins with vonWillebrand factor
(VWF) domains, which can play important roles in cell adhesion (51).

Nine genes encoding ankyrin repeats were up-regulated (up to
110.2-fold), which are often involved in protein–protein interactions
(52). MACs stimulated a significant number of genes encoding
nucleic acid-binding transcription factors, including a set that is typi-
cally downstream of MAPK signaling pathways (up-regulated 2.2- to
10.0-fold). Two genes encoding proteins with similarity to tumor
necrosis factor receptor-associated factor 3, shown to function in
MAPK signaling complexes in humans (53), were up-regulated 42.5-
and 56.6-fold in response to MACs after 30 min. These results
demonstrate that after 30 min of exposure to MACs, transcription of
distinct sets of tissue remodeling-, innate immunity-, and signal
transduction-associated genes was dramatically increased.

p38 and JNK MAPK Signaling Regulate Steps of Metamorphosis After
Cilia Loss. To understand the events following MAC-induced
development, we asked whether MAPK signaling is important
for Hydroides metamorphosis. We confirmed the presence of
three extensively studied subgroups of MAPK genes (ERK, JNK,
and p38) and associated signaling components in the Hydroides
genome (Fig. 3A and SI Appendix, Table S2). Transcript abun-
dances of most of the MAPK genes from competent larvae were
high enough (>1 fragments per kb of transcript per million
mapped reads) (SI Appendix, Table S2) to indicate that these
genes were expressed upon induction of metamorphosis. We
then asked whether metamorphosis proceeds in the presence of
chemical inhibitors against each MAPK pathway. The U0126
inhibitor against mitogen/extracellular signal-regulated kinase
(MEK; a kinase of ERK) did not prevent metamorphosis in
response to MACs (Fig. 3B). However, the production of a
primary and a secondary tube, larval body elongation, and de-
velopment of branchial radioles were inhibited when larvae were
pretreated for 2 h with the p38 inhibitor SB203580 or the JNK
inhibitor SP600125 (Fig. 3 C–E). Although these inhibitors ab-
rogated some developmental changes, larvae initiated settlement
behavior (stopped swimming) and metamorphosis (lost cilia lo-
calized to the prototroch). Without the addition of MACs, the
larvae appeared normal after 24 h in the presence of up to 10 μM
all inhibitors tested, suggesting that the concentration of inhibi-
tors used was not toxic. To determine whether the inhibitors
were active against their intended targets, we measured the levels
of specific phosphorylated components of the p38 and JNK
pathways using antibodies raised against mammalian phospho-
proteins with homologs in Hydroides (SI Appendix, Table S2).
Hydroides protein extracts had increased levels of diphosphory-
lated p38 after treatment with SB203580 and decreased levels of
diphosphorylated JNK after SP600125 treatment (SI Appendix,
Fig. S3), similar to previous findings in human cells (54, 55).
Upon stimulation, p38 phosphorylates MAPKAPK-2 and ATF-2,
both of which were moderately increased after stimulation by
MACs but not in the presence of SB203580 (SI Appendix, Fig.
S3). Similarly, JNK phosphorylation of ATF-2 and p53 increased
after exposure to MACs but was inhibited by SP600125 (SI Ap-
pendix, Fig. S3). These results identify p38 and JNK MAPK
pathways as important phosphotransfer signaling systems in
Hydroides metamorphic development.

A Bacterial Locus Responsible for Metamorphosis-Associated Transcription.
We then sought to identify the developmental stage at which meta-
morphosis-associated transcription could be detected. Quantitative
real-time PCR (qRT-PCR) robustly detected the up-regulation of
Fos (TCONS_00100867) and VWF (TCONS_00123609) genes in
response to wild-type MACs after 30 min (Fig. 3F and SI Appendix,
Fig. S3). Pretreatment of larvae with the p38 and JNK inhibitors
SB203580 or SP600125 partially repressed Fos and VWF expression
compared with controls induced to metamorphose by MACs without
an inhibitor (SI Appendix, Fig. S3). These results suggest that p38 and
JNK signaling might act downstream of or in parallel to an initial
signal of metamorphosis.
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We then tested whether transcriptional changes occur coincident
with the initiation of settlement or metamorphosis by using Δ12590–
615 MACs or wild-type MACs, respectively, as inducers. Expres-
sion of Fos and VWF, measured by qRT-PCR, was not signifi-
cantly activated in response to Δ12590–615 MACs compared with
wild type (Fig. 3F), suggesting that metamorphosis-associated tran-
scription and the activation of MAPK signaling require the
JF50_12590–JF50_12615 genomic region of P. luteoviolacea. These
results show that metamorphosis-associated transcription and
MAPK signaling are activated coincident with the loss of cilia and
establish a timeline of inductive and signaling events following
MAC-initiated metamorphosis of Hydroides: MACs engage with
tubeworm larvae, inducing them to initiate settlement behavior;
then, particular properties or modification of MACs encoded
by the JF50_12590–JF50_12615 region initiate metamorphosis
(cilia loss) and activate metamorphosis-associated transcription;
and, finally, p38 and JNK signaling are partially responsible for the
regulation of gene expression and morphological remodeling
events after cilia loss (Fig. 3G).

Discussion
We now know that interactions with bacteria can directly benefit
animals (56, 57), and one of the most dramatic examples occurs
when bacteria induce animal metamorphosis. Although repre-
sentative species from diverse taxa undergo bacteria-induced
metamorphosis (Fig. 1A), little is known about the processes that
occur within the animal as they detect the cue produced by
bacteria. To understand the developmental cascade in animals
after bacteria induce metamorphosis, we sequenced the genome
of Hydroides and analyzed changes in gene expression upon ex-
posure to MACs. Although Hydroides (a lophotrochozoan), fruit
flies, and nematodes (ecdysozoans) phylogenetically group as
protostomes (58), the Hydroides genome shares more gene ho-
mologs with deuterostome (purple sea urchin, zebrafish, and
human) and nonbilaterian (starlet sea anemone) genomes (Fig.
1C and SI Appendix, Fig. S1). Previous studies also reported
relatively slow evolutionary rates of annelids compared with the
model ecdysozoans D. melanogaster and C. elegans (43–46),
suggesting that annelids might share more ancestral character-
istics with distantly related model animals. Mechanisms un-
derpinning the metamorphic response of Hydroides to bacterial
inducers might therefore have conserved features present in
other metazoans and serve as an example of how bacteria impact
the development of an animal. In an applied context, such fea-
tures are of interest because they might be used as targets for the
general control of biofouling organisms.
In addition to the conservation of genome content, many genes

that were differentially regulated upon the stimulation of Hydroides
metamorphosis are homologous to genes associated with develop-
ment in other model animals. Hydroides larvae up-regulated MMPs
in response to MACs, important factors involved in the remodeling
of tissue. The first MMP to be described was found to degrade fi-
brillar collagen in tadpole tails during metamorphosis (48). In the
greater wax moth, both metamorphosis and collagen VI fragments
were shown to stimulate an innate immune response (59), and this
response is thought to be mediated by an endogenous MMP (60).
Hydroides up-regulated SPI-encoding genes, which have potent
bactericidal activity implicated in host innate immunity in Hydra
(49) and black tiger shrimp (50). Similar differential expression
of immunity genes during metamorphosis was observed in
corals (25, 28) and ascidians (14, 27, 61). VWF domain-encoding
genes were up-regulated and might be important for tube building.
Proteins containing VWF domains were found in the organic
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Fig. 2. Two bacterial loci are required for different stages of metamorphosis.
(A and B) MAC extract from wild-type, ΔmacB, or Δ12590–615 strains was
added to competent larvae in polystyrene cuvettes in a total of 0.5 mL. The
vertical distribution of larvae within the cuvette was quantified at 5 min (A) or
30 min (B) after addition of MACs. Artificial seawater without MACs served as
a negative control. Error bars indicate SDs of six biological replicates. Twelve to
55 larvae were quantified per replicate. Student’s t test of mean depth: ns, not
significant; ***P < 0.00001. (C) Metamorphosis of Hydroides exposed to MAC
extract from wild-type, Δ12590–615, ΔmacB, or Δ12590–615::12590–615. Error
bars are SDs of four biological replicates. (D) Quantification of MAC arrays
from extract of wild type or Δ12590–615. Error bars are SDs of three biological
replicates. Student’s t test. (E) Image of a fluorescently tagged MAC from

Δ12590–615 macB-sfgfp. (F and G) The wild type (F) and Δ12590–615 mutant
(G) produce ordered arrays having comparable size and number of MACs.
Shown are 9-nm slices through electron cryotomograms (Scale bars, 100 nm).
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matrix of oyster shells (62) and coral skeletons (63). Alterna-
tively, VWF domain-containing genes could be involved in cell
adhesion during tissue remodeling (51). Hydroides larvae up-reg-
ulated MAPK signaling genes, which were previously implicated
in modulating metamorphosis of other marine organisms including
corals (28), ascidians (30), and barnacles (31). The transcriptional
signature of metamorphosis in Hydroides therefore parallels de-
velopmental processes identified in other animal species.
To understand how bacteria activate animal development, we

dissected the events occurring upon bacteria-stimulated meta-
morphosis. Although transcription changed following MAC ex-
posure, the initial signal reception and transduction orchestrating
Hydroides metamorphosis are likely initially mediated by post-
translational mechanisms (64) and subsequently lead to the dif-
ferential expression of metamorphosis-associated genes. Based on
transcript sequencing and use of pharmacological inhibitors, we
found that such posttranslational mechanisms include p38 and
JNK MAPK signaling. A previous report showed the importance
of p38 signaling in Hydroides metamorphosis in response to nat-
ural marine biofilms, but results were inconclusive for the JNK
inhibitor SP600125 (29). Our results suggest that p38 and JNK
signaling are necessary for the stages of MAC-induced meta-
morphosis involving morphological remodeling following cilia loss,
including body elongation, primary and secondary tube formation,
and branchial lobe formation (Fig. 3).
In addition to using genomics and pharmacological inhibitors,

we used two MAC mutants to dissect metamorphosis; one is
unable to initiate settlement (ΔmacB), and the other initiates
settlement but does not induce metamorphosis (Δ12590–615).
Using these mutants, we determined that the irreversible step of
metamorphosis starts with cilia loss, activation of metamorphosis-
associated gene expression, and MAPK signaling. We hypothesize
that the JF50_12590–JF50_12615 region encodes structures for the
proper binding of MACs to larvae and components delivered to
larvae by the MAC structure, or mediates metamorphosis by
encoding chaperones essential for the proper assembly or con-
formation of MACs. Future work will reveal the mechanisms by
which these and other loci affect settlement and metamorphosis
of Hydroides.
In conclusion, we sequenced the genome and transcriptome of

a model tubeworm and show how its settlement and meta-
morphic program respond to a bacterial inducer. As a member of
the undersampled lophotrochozoan clade, the availability of the
Hydroides genome will broaden the repertoire of tools available
to study metazoan evolution. Identifying the molecular basis of
bacteria-mediated metamorphosis will help us understand the
molecular coevolution of bacteria and animals, which may have
played an important role in generating the spectacular diversity
in animal form and function that we see today. Our results in-
dicate that bacterial factors and intracellular signaling systems
may be controlled during surface colonization for applications,
such as the management of biofouling, and to better understand
processes that govern the recruitment and maintenance of ma-
rine animal populations.

Methods
Specimens of H. elegans were obtained from Marina Del Rey, California.
Embryos were obtained and maintained as previously described (10, 32).
Two libraries with average insert sizes of 300 and 600 bp were prepared
using the New England Biolabs, Inc. Next Ultra DNA Library Prep Kit (NEB;
E7370) according to the manufacturer’s instructions with minor modifica-
tions. Libraries were sequenced on an Illumina HiSeq 2500 instrument in
paired-end mode with a read length of 150 nt to the depth of 100 million
and 75 million reads for the 300- and 600-bp libraries, respectively. Detailed
genome sequencing, assembly, and experimental procedures and datasets
are provided in SI Appendix, Methods, and Datasets S2–S4.
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